Продолжаю серию постов про свои клубничные приключения. В этом хочу рассказать, как дорабатывал систему выращивания клубники, с какими проблемами столкнулся, каких результатов достиг и почему решил остановить проект «Коробка 2.0».
Предыдущие части:
Продолжаю серию постов про свои клубничные приключения. В этом хочу рассказать, как дорабатывал систему выращивания клубники, с какими проблемами столкнулся, каких результатов достиг и почему решил остановить проект «Коробка 2.0».
Предыдущие части:
Создатели робототехники, будь то ученые или же писатели-фантасты, часто вдохновляются представителями фауны, в том числе и человеком. В результате появляются человекоподобные андроиды, роботизированные рыбы, птицы и даже насекомые. Однако мало кто обращает внимание на не менее богатое и разнообразное царство, на растения. Эти удивительные организмы адаптировались к произрастанию в самых разных условиях, от дождливых тропиков до засушливых пустынь, от океанических глубин до горных склонов, от непроходимых лесов до горшочков на подоконнике. Вполне логично, что инженерам-робототехникам есть чем вдохновится. И вот ученые из Миннесотского университета (США) разработали новый тип гибкого робота, который имитирует рост корней растения. Из чего состоит робот, чем он похож на корни, и на что способен? Ответы на эти вопросы мы найдем в докладе ученых. далее »
Еще со школьной скамьи мы знаем, что многим растениям для нормального существования необходим фотосинтез — удивительный процесс преобразования солнечного света в энергию химических связей. Но, какой бы гениальной ни была природа, фотосинтез нельзя назвать сверхэффективным процессом, так как лишь 1% солнечной энергии попадает в растение. Решение этой проблемы нашли ученые из Калифорнийского университета в Риверсайде (США). Они разработали метод, позволяющий выращивать растения в полной темноте, т. е. полностью без участия солнечного света. На чем основан искусственный фотосинтез, как он работает, и сможет ли он помочь с продовольственным кризисом? Ответы на эти вопросы мы найдем в докладе ученых. Поехали. далее »
Если вы хоть раз пытались склеить что-то с помощью супер-клея, то наверняка заметили, что эта субстанция обладает удивительным свойством склеивать пальцы, вместо ремонтируемого предмета. Это, конечно комичное преувеличение, однако подобного нельзя сказать о висцине, вырабатываемом в ягодах омелы. Висцин успешно прилипает фактически ко всему, к чему прикасается, что делает его прекрасной основой для клея. Ученые из Макгиллского университета (Монреаль, Канада) решили исследовать это вещество, дабы определить его потенциальную пригодность в медицине. В чем секрет висцина, каковы его физико-химические свойства, и какую пользу он может принести медикам? Ответы на эти вопросы мы найдем в докладе ученых. Поехали. далее »
Биологи из Университета Западной Австралии обнаружили у берегов континента самую большую в мире водоросль. Её площадь достигает 180 км².